Burkholderia pseudomallei RpoS regulates multinucleated giant cell formation and inducible nitric oxide synthase expression in mouse macrophage cell line (RAW 264.7).

نویسندگان

  • P Utaisincharoen
  • S Arjcharoen
  • K Limposuwan
  • S Tungpradabkul
  • S Sirisinha
چکیده

Burkholderia pseudomallei is the causative agent of melioidosis. This bacterium can invade and survive inside the phagocytic and nonphagocytic cells. After internalization, the bacteria can escape from the membrane-bound phagosome into the cytoplasm. Internalised B. pseudomallei can also induce a cell-to-cell fusion, resulting in a multinucleated giant cell (MNGC) formation. In the present study, we demonstrated that B. pseudomallei rpoS null mutant was similar to its wild type parent in its ability to survive and multiply inside the mouse macrophages, but it failed to stimulate MNGC formation. The rpoS mutant was also unable to activate inducible Nitric Oxide Synthase (iNOS) in resting mouse macrophages but in gamma interferon (IFN-gamma)-activated macrophages, the mutant was able to induce significantly higher levels of iNOS and NO when compared with its wild-type counterpart, resulting in a significantly lower number of bacteria inside the infected host cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Burkholderia pseudomallei-induced expression of suppressor of cytokine signaling 3 and cytokine-inducible src homology 2-containing protein in mouse macrophages: a possible mechanism for suppression of the response to gamma interferon stimulation.

Burkholderia pseudomallei, the causative agent of melioidosis, is a facultative intracellular gram-negative bacterium that is able to survive and multiply in macrophages. Previously, we reported that B. pseudomallei was able to escape macrophage killing by interfering with the expression of inducible nitric oxide synthase (iNOS). In the present study, we extended this finding and demonstrated t...

متن کامل

Developed Method Application for Nitrite Ion (NO2¯ ) Analysis of Tib -186 Macrophage Like Cell Lines by Rapid Isocratic HPLC System with High Sensitive Glassy Carbon Electrochemical Detector

A rapid isocratic method of high performance liquid chromatography system (HPLC) with a glassy carbon working electrode of electrochemical detector is set up for quantitative detection of  trace amount of nitrite ion (NO2¯) in aqueous protein containing cell lysate, cell media, plasma, serum, urine and other body fluids. The solid extraction  reversed phase cartridges ...

متن کامل

Thiazolidinedione Derivative Suppresses LPS-induced COX-2 Expression and NO Production in RAW 264.7 Macrophages

The present study was designed to investigate the inhibitory effect of 2,4 bis-[(4-ethoxyphenyl)azo] 5-(3-hydroxybenzylidene) thiazolidine-2,4-dione (TZD-OCH2CH3) on the cyclo-oxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) in RAW 264.7 cells. The effects of TZD-OCH2CH3 on COX-2 and iNOS mRNA expression in LPS-activated RAW 264.7 cells ...

متن کامل

Thiazolidinedione Derivative Suppresses LPS-induced COX-2 Expression and NO Production in RAW 264.7 Macrophages

The present study was designed to investigate the inhibitory effect of 2,4 bis-[(4-ethoxyphenyl)azo] 5-(3-hydroxybenzylidene) thiazolidine-2,4-dione (TZD-OCH2CH3) on the cyclo-oxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) in RAW 264.7 cells. The effects of TZD-OCH2CH3 on COX-2 and iNOS mRNA expression in LPS-activated RAW 264.7 cells ...

متن کامل

Ascorbate enhances iNOS activity by increasing tetrahydrobiopterin in RAW 264.7 cells.

Studies on the effect of ascorbic acid on inducible nitric oxide synthase (iNOS) activity are few and diverse, likely to be dependent on the species of cells. We investigated a role of ascorbic acid in iNOS induction and nitric oxide (NO) generation in mouse macrophage cell line RAW 264.7. Although interferon- (IFN-) gamma alone produced NO end products, ascorbic acid enhanced NO production onl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Microbial pathogenesis

دوره 40 4  شماره 

صفحات  -

تاریخ انتشار 2006